21 research outputs found

    Tensor polyadic decomposition for antenna array processing

    No full text
    International audienceIn the present framework, a tensor is understood as a multi-way array of complex numbers indexed by three (or more) indices. The decomposition of such tensors into a sum of decomposable (i.e. rank-1) terms is called ''Polyadic Decomposition'' (PD), and qualified as ''canonical'' (CPD) if it is unique up to trivial indeterminacies. The idea is to use the CPD to identify the location of radiating sources in the far-field from several sensor subarrays, deduced from each other by a translation in space. The main difficulty of this problem is that noise is present, so that the measurement tensor must be fitted by a low-rank approximate, and that the infimum of the distance between the two is not always reached. Our contribution is three-fold. We first propose to minimize the latter distance under a constraint ensuring the existence of the minimum. Next, we compute the Cram{Ă©}r-Rao bounds related to the localization problem, in which nuisance parameters are involved (namely the translations between subarrays). Then we demonstrate that the CPD-based localization algorithm performs better than ESPRIT when more than 2 subarrays are used, performances being the same for 2 subarrays. Some inaccuracies found in the literature are also pointed out

    Joint Source Estimation and Localization

    No full text
    International audienceThe estimation of directions of arrival is formulated as the decomposition of a 3-way array into a sum of rank-one terms, which is possible when the receive array enjoys some geometrical structure. The main advantage is that this decomposition is essentially unique under mild assumptions, if computed exactly. The drawback is that a low-rank approximation does not always exist. Therefore, a constraint is first introduced that ensures the existence of the latter best approximate. Then Cramér-Rao bounds are derived for localization parameters and source signals, assuming the others are nuisance parameters; some inaccuracies found in the literature are pointed out. Performances are eventually compared with reference algorithms such as ESPRIT, in the presence of additive Gaussian noise, with possibly non circular distribution

    Approximation tensorielle sous contrainte d'existence. Application au traitement d'antennes

    Get PDF
    International audienceThe subject is localization and estimation of sources in difficult conditions, namely when the sources are correlated and closely located in space, and samples are short. The proposed algorithm is based on a low-rank tensor approximation under original constraints ensuring its existence. It requires an antenna array formed of identical subarrays shifted in space. Performance bounds are computed in the presence of additive complex noncircular Gaussian noise.On s’intéresse au problème de localisation et d’estimation de sources dans des conditions difficiles, à savoir lorsque les sources sont corrélées et proches dans l’espace, et les échantillons courts. L'algorithme proposé est basé sur une approximation tensorielle de rang faible sous des contraintes originales garantissant son existence. Il nécessite une antenne formée de plusieurs sous-antennes identiques se déduisant les unes des autres par translation. Les bornes de performances sont calculées en présence de bruit additif gaussien complexe non circulaire

    Optimal choice of Hankel-block-Hankel matrix shape in 2-D parameter estimation: the rank-one case

    No full text
    Revised version.International audienceIn this paper we analyse the performance of 2-D ESPRIT method for estimating parameters of 2-D superimposed damped exponentials. 2-D ESPRIT algorithm is based on low-rank decomposition of a Hankel-block-Hankel matrix that is formed by the 2-D data. Through a first-order perturbation analysis, we derive closed-form expressions for the variances of the complex modes, frequencies and damping factors estimates in the 2-D single-tone case. This analysis allows to define the optimal parameters used in the construction of the Hankel-block-Hankel matrix. A fast algorithm for calculating the SVD of Hankel-block-Hankel matrices is also used to enhance the computational complexity of the 2-D ESPRIT algorithm

    A simultaneous sparse approximation method for multidimensional harmonic retrieval

    No full text
    International audienceIn this paper, a new method for the estimation of the parameters of multidimensional (R-D) harmonic and damped complex signals in noise is presented. The problem is formulated as R simultaneous sparse approximations of multiple 1-D signals. To get a method able to handle large size signals while maintaining a sufficient resolution, a multigrid dictionary refinement technique is associated to the simultaneous sparse approximation. The refinement procedure is proved to converge in the single R-D mode case. Then, for the general multiple modes case, the signal tensor model is decomposed in order to handle each mode separately in an iterative scheme. The proposed method does not require an association step since the estimated modes are automatically "paired". We also derive the Cramér-Rao lower bounds of the parameters of modal R-D signals. The expressions are given in compact form in the single tone case. Finally, numerical simulations are conducted to demonstrate the effectiveness of the proposed method

    A Greedy Sparse Method Suitable for Spectral-Line Estimation

    No full text
    Rapport interne de GIPSA-labThis letter presents a variant of Matching Pursuit (MP) method for compressive sensing and sparse signal reconstruction. As an extension of MP, the proposed algorithm incorporates a new backward technique to maintain or replace the previous selected atoms in the case of coherent dictionaries. Computer simulations using Fourier dictionaries are conducted to show the effectiveness of the proposed method compared to some other sparse approximation methods

    Methods for multidimensional modal retrieval. Application to multidimensional NMR spectroscopy

    No full text
    This thesis aims at the developpement of modal analysis algorithms for multidimensional signals (R-D) presenting resolution and numerical complexity problems. A multidimensional signal of dimension R is the superimposition of products of R monodimensional sinusoids. The intended application is NMR spectroscopy. Firstly, after a state-of-the-art on the so-called ''algebraic'' estimation methods, we propose a parametric method based on tensors. It uses the multidimensional tensor lattice of the R-D modal signal and exploits the eigenvectors structure of the signal subspace obtained using a higher-order singular value decomposition (HOSVD). Unlike most tensor-based eigenvalue approaches, modes estimated by the proposed method are automatically paired, thus it avoids a separate pairing step and joint diagonalization. Secondly, the multidimensional modal estimation problem is formulated as a sparse approximation problem in which the dictionary is obtained by the discretization of complex exponential functions. To achieve good spectral resolution, it is necessary to choose a very fine grid, which leads to handling a large dictionary with all the underlying computational problems. Hence, we propose a novel method that consists in combining a sparse approximation and a multigrid approach on several levels of resolution. The approach is demonstrated using several 1-D and 2-D examples. In addition, the influence of the initial dictionary on the algorithm convergence is also studied. The developed methods are then applied to estimate 1-D and 2-D NMR signal parameters. To reduce the computation cost in the case of large bidimensional signals, we also propose an approach exploiting the simultaneous sparsity principle to estimate the coordinates of the modes on each dimension. The procedure involves two 1-D sparse approximations followed by a 2-D modes painring step.La thèse porte sur le développement d'algorithmes d'estimation rapides pour l'analyse modale de signaux multidimensionnels (R-D) présentant des problèmes de résolution et de complexité numérique. Un signal multidimensionnel de dimension R est la superposition de produits de R sinusoïdes. L'application visée est la spectroscopie RMN. Dans un premier temps, après un état de l'art des méthodes d'estimation dites " algébriques ", nous proposons une méthode paramétrique basée sur les tenseurs. Celle-ci utilise le treillis multidimensionnel du tenseur du signal R-D et exploite la structure des vecteurs propres du sous-espace signal obtenus en utilisant la décomposition en valeurs singulières d'ordre supérieur. Contrairement à la plupart des approches tensorielles, la méthode proposée permet d'éviter la phase d'appariement des coordonnées des modes dans chacune des dimensions ou d'une diagonalisation conjointe. Dans un deuxième temps, le problème d'estimation modale multidimensionnelle est présenté comme un problème d'approximation parcimonieuse dans lequel le dictionnaire est obtenu par la discrétisation de fonctions exponentielles complexes. Afin d'atteindre une bonne résolution spectrale, il est nécessaire de choisir une grille très fine, ce qui conduit à la manipulation d'un dictionnaire de grande taille avec tous les problèmes calculatoires sous-jacents. Nous proposons alors une méthode originale qui consiste à combiner une approximation parcimonieuse et une approche multigrille sur plusieurs niveaux de résolution. L'approche est validée au travers de plusieurs exemples 1-D et 2-D. En outre, une étude sur l'influence du choix du dictionnaire initial sur la convergence est également menée. Les méthodes développées sont ensuite appliquées à l'estimation des paramètres de signaux de spectroscopie RMN 1-D et 2-D. Afin de réduire le coût de calcul dans le cas de signaux bidimensionnels de grande taille, nous proposons également une approche exploitant la notion de parcimonie simultanée, pour estimer les coordonnées des modes sur chacune des dimensions. La procédure consiste à effectuer deux approximations parcimonieuses 1-D suivies d'une phase de reformation des paires de modes 2-D

    Développement de méthodes d'estimation modale de signaux multidimensionnels. Application à la spectroscopie RMN multidimensionnelle

    No full text
    This thesis aims at the developpement of modal analysis algorithms for multidimensional signals (R-D) presenting resolution and numerical complexity problems. A multidimensional signal of dimension R is the superimposition of products of R monodimensional sinusoids. The intended application is NMR spectroscopy. Firstly, after a state-of-the-art on the so-called ''algebraic'' estimation methods, we propose a parametric method based on tensors. It uses the multidimensional tensor lattice of the R-D modal signal and exploits the eigenvectors structure of the signal subspace obtained using a higher-order singular value decomposition (HOSVD). Unlike most tensor-based eigenvalue approaches, modes estimated by the proposed method are automatically paired, thus it avoids a separate pairing step and joint diagonalization. Secondly, the multidimensional modal estimation problem is formulated as a sparse approximation problem in which the dictionary is obtained by the discretization of complex exponential functions. To achieve good spectral resolution, it is necessary to choose a very fine grid, which leads to handling a large dictionary with all the underlying computational problems. Hence, we propose a novel method that consists in combining a sparse approximation and a multigrid approach on several levels of resolution. The approach is demonstrated using several 1-D and 2-D examples. In addition, the influence of the initial dictionary on the algorithm convergence is also studied. The developed methods are then applied to estimate 1-D and 2-D NMR signal parameters. To reduce the computation cost in the case of large bidimensional signals, we also propose an approach exploiting the simultaneous sparsity principle to estimate the coordinates of the modes on each dimension. The procedure involves two 1-D sparse approximations followed by a 2-D modes painring step.La thèse porte sur le développement d'algorithmes d'estimation rapides pour l'analyse modale de signaux multidimensionnels (R-D) présentant des problèmes de résolution et de complexité numérique. Un signal multidimensionnel de dimension R est la superposition de produits de R sinusoïdes. L'application visée est la spectroscopie RMN.Dans un premier temps, après un état de l'art des méthodes d'estimation dites « algébriques », nous proposons une méthode paramétrique basée sur les tenseurs. Celle-ci utilise le treillis multidimensionnel du tenseur du signal R-D et exploite la structure des vecteurs propres du sous-espace signal obtenus en utilisant la décomposition en valeurs singulières d'ordre supérieur. Contrairement à la plupart des approches tensorielles, la méthode proposée permet d'éviter la phase d'appariement des coordonnées des modes dans chacune des dimensions ou d'une diagonalisation conjointe. Dans un deuxième temps, le problème d'estimation modale multidimensionnelle est présenté comme un problème d'approximation parcimonieuse dans lequel le dictionnaire est obtenu par la discrétisation de fonctions exponentielles complexes. Afin d'atteindre une bonne résolution spectrale, il est nécessaire de choisir une grille très fine, ce qui conduit à la manipulation d'un dictionnaire de grande taille avec tous les problèmes calculatoires sous-jacents. Nous proposons alors une méthode originale qui consiste à combiner une approximation parcimonieuse et une approche multigrille sur plusieurs niveaux de résolution. L'approche est validée au travers de plusieurs exemples 1-D et 2-D. En outre, une étude sur l'influence du choix du dictionnaire initial sur la convergence est également menée. Les méthodes développées sont ensuite appliquées à l'estimation des paramètres de signaux de spectroscopie RMN 1-D et 2-D. Afin de réduire le coût de calcul dans le cas de signaux bidimensionnels de grande taille, nous proposons également une approche exploitant la notion de parcimonie simultanée, pour estimer les coordonnées des modes sur chacune des dimensions. La procédure consiste à effectuer deux approximations parcimonieuses 1-D suivies d'une phase de reformation des paires de modes 2-

    Approximation tensorielle sous contrainte d’existence. Application au traitement d’antennes

    Get PDF
    On s’intéresse au problème de localisation et d’estimation de sources dans des conditions difficiles, à savoir lorsque les sources sont corrélées et proches dans l’espace, et les échantillons courts. L’algorithme proposé est basé sur une approximation tensorielle de rang faible sous des contraintes originales garantissant son existence. Il nécessite une antenne formée de plusieurs sous-antennes identiques se déduisant les unes des autres par translation. Les bornes de performances sont calculées en présence de bruit additif gaussien complexe non circulaire.The subject is localization and estimation of sources in difficult conditions, namely when the sources are correlated and closely located in space, and samples are short. The proposed algorithm is based on a low-rank tensor approximation under original constraints ensuring its existence. It requires an antenna array formed of identical subarrays shifted in space. Performance bounds are computed in the presence of additive complex noncircular Gaussian noise
    corecore